Economics of Waste Conversion

Chemical Conversion via Modular Manufacturing: Distributed, Stranded, and Waste Feedstocks

markmw@iastate.edu

Map Credit: Brown and Brown, Why Are We Producing Biofuels? Winter 2011.

BREAKTHROUGH ENERGY COALITION

"Our primary goal with the Coalition is as much to accelerate progress on clean energy as it is to make a profit" — Bill Gates

Power generation capacity additions (GW)

Bloomberg New Energy Finance

Economics of Waste Conversion

Low energy density

Highly distributed or stranded

Of low (perceived) value

Of high untapped potential

Economics of Waste Conversion

Low energy density

Highly distributed or stranded

Of low (perceived) value

Of high untapped potential

Economic lessons from the solar, wind, and ethanol industries

- Experience curves: every doubling of production reduces capital costs by a fixed percentage
- System optimization: operating costs decrease through learning-by-doing
- Technological innovation: improvements in efficiency and resource use reduce costs
- Manufacturing improvements: improvements in design, material use, automation reduce cost

Cost breakdown of installed PV

Source: DoE "The Dollar-a-Watt Program"

Solar Energy Manufacturing

PV EXPERIENCE CURVE, 1976-2012 2012 \$/W

Note: Prices inflation indexed to US PPI.

Source: Paul Maycock, Bloomberg New Energy Finance

TWITTER: @MLiebreich

Wind Energy Manufacturing

Wind power projects indicate 'sweet' spot for wind farms (5 – 20 MW)

Source: 2009 Wind Technologies Market Report. U.S. DOE

Learning Rates Across Industries

Industries that adopt mass production have learning rates of 18% vs. 6% for economies-of-scale

Daugaard et al. 2014

Historical Ethanol Capital Cost Trends in the US

G(Gas), C(Coal), and B(Biomass)-to-Liquids

How do we increase learning rates of waste conversion?

Could small, modular, distributed systems unlock biofuels' potential?

Manufacturing-based cost reductions

Increased proximity to resources and consumers

Reduced costs of relocation

Increased resilience of distribution networks

Improved feedstock/product compatibility

Zhang & Wright 2014

The Fast Pyrolysis Platform

Fast pyrolysis enables small scale (200 ton per day) production of:

- Hydrocarbon chemicals,
- Alternative biochemicals, and
- Fuels
- Biochar for carbon sequestration
- Biochar for soil amendment

Courtesy of: Brown

Market-Based Product Portfolios

Bio-oil co-firing fuel (BCF)

Bio-char

Fluidized bed pyrolyzer at ISU

Bio-oil (heavy end fraction)

Land application of bio-char

- Providing nutrients
- Improving water retention capacity
- Reducing soil bulk density

Coal

Bio-oil co-firing fuel

Overcoming biomass and coal co-firing limits

Without usual problems of boiler derating and ash fouling

BCF power meets Clean Power Plan Coal plant emissions reductions at a cost of ¢9.81/kWh

Dang et al. 2015

Wet Feedstock Conversion

Wet Feedstocks Delivered Costs Range between \$65 and \$90 per tonne with Biofuel costs of \$2.00 to \$3.00 per gallon

Economic lessons from the solar, wind, and ethanol industries

- Experience curves: every doubling of production reduces capital costs by a fixed percentage
- System optimization: operating costs decrease through learning-by-doing
- Technological innovation: improvements in efficiency and resource use reduce costs
- Manufacturing improvements: improvements in design, material use, automation reduce cost

Economics of Waste Conversion

Low energy density

Highly distributed or stranded

Of low (perceived) value

Of high untapped potential

Acknowledgments

Jacqulyn Baughman

Jill Cornelis

Ryan Smith

Jill Euken

Robert Brown

Iowa Energy Center

NSF EPSCoR

Department of Energy

http://www.biorenew.iastate.edu/research/signature/energymfg/

Iowa State University BioCentury Research Farm markmw@iastate.edu

Benefits of Small Modular Design

- Locational flexibility
- Investment flexibility
- Operational flexibility
- Management flexibility

Learning Rates

Levels of Biofuel Pathway Experience

Date of First Commercial-scale Implementation

Gasification and F-T synthesis

Cellulosic ethanol via enzymatic hydrolysis

Catalytic pyrolysis and hydrotreating

Engineering Design

Small modular designs enable novel platforms and products.

The engineering challenge differs from large-scale systems:

- Design for manufacturability
- Lean manufacturing
- Resource sustainability

Engineering Design

Engineering Design Market Analysis

Pyrolysis in Nicaragua

The role of lowa State University

With strengths in Mechanical, and Manufacturing Engineering, Engineering Management, and Renewable Energy Research,

the goal of this initiative is to focus on the development of the key link in the biofuels supply chain, the design and development of advanced energy manufacturing technologies to reduce the cost of biofuel production facilities.

